Малахов. Целительные силы.
   
 

 

СОСТАВ ПИЩИ.

Теперь мы подошли к следующему важному разделуь- из чего состоит наша пища? Какую роль играют компоненты пищи в поддержании нормальной жизнедеятельности организма?

  ВОДА

Человеческий организм на 55 - 65 проц. состоит из воды. В организме взрослого человека с массой тела 65 кг содержится в среднем 40 литров воды; из них около 25 литров находится внутри клеток, а 15 в составе внеклеточных жидкостей организма.
По мере старения человека количество воды в теле снижается еще больше. Сравните, в теле 3-месячного плода 95 процентов воды, а у новорожденного ребенка уже 70 проц.
Многие авторы считают одной из причин старения организма понижение способности коллоидных веществ, особенно белков, связывать большое количество воды. Вода является основной средой, в которой протекают многочисленные химические реакции и физико-химические процессы (ассимиляция, диссимиляция, осмос, диффузия, транспорт и другие), лежащие в основе жизни. Организм строго регулирует содержание воды в каждом органе и каждой ткани. Постоянство внутренней среды организма, в том числе и определенное содержание воды, одно из главных условий нормальной жизнедеятельности.
Вода, содержащаяся в организме, качественно отличается от обычной. Во-первых, это структурированная вода. С применением тончайших новых методов физического эксперимента обнаружился удивительный факт. Оказалось, что в теснейшем контакте с биологическими молекулами вода находится как бы в замерзшем состоянии (имеет структуру льда). Эти «ледяные» структуры воды являются «матрицей жизни». Без них невозможна сама жизнь. Только их наличие дает возможность протекания важнейших для жизни биофизических и биохимических реакций, например, проведение энергии от места ее нахождения до места потребления в организме.
Живые молекулы организма вложены в ледяную решетку, как в идеально подходящий к ним футляр. Поэтому оводнение биомолекул и прочность удержания ими воды намного выше, когда вода, образующая с ними систему, имеет структуру «льда».
Обыкновенная вода представляет собой хаотическое скопление молекул. Такой «футляр» для биомолекул не подходит. Живые молекулы плохо располагаются между молекулами такой воды и поэтому удерживают ее плохо. На придание воде структуры «льда» организм тратит свою энергию.
Во-вторых, структурированная вода, особенно вода, содержащаяся в живых организмах, обладает дисимметрией. Любая дисимметрия (как и структура) - источник свободной энергии.
В-третьих, оказалось, что биологическая информация может транслироваться в водно-кристаллических структурах, открылась «память» воды. Причем эта память настолько хорошо «записана», что ее можно стереть, лишь два, а то и три раза прокипятив воду.
Вода, отвечающая вышеперечисленным требованиям, в изобилии находится в фруктах и овощах, ну и, конечно, в свежевыжатых овощных и фруктовых соках.
В овощах и плодах ее содержится 70 - 90 процентов, нерастворимые вещества составляют 2 - 8 процентов, растворимые - 7 - 16 процентов.
Вода находится в плодах и овощах в свободном и связанном с коллоидами состоянии. Свободная (структурированная) вода содержится в клеточном соке плодов и овощей; в ней растворены сахар, кислоты, минеральные соли и другие вещества; она легко удаляется высушиванием. Плоды и овощи содержат свободной воды больше, чем связанной. Вода, находящаяся в прочной связи с различными веществами (связанная), не может быть отделена от них без изменения строения, поэтому всасывается она постепенно, по мере ее освобождения. Много воды содержат огурцы, салат, томаты, кабачки, капуста, тыква, зеленый лук, ревень, спаржа, ну и, конечно, арбузы и дыни. Как правило, прием сочных плодов и овощей насыщает нас самой лучшей водой, и нам вообще не хочется пить.
Прекрасными характеристиками обладает талая вода.
Потребление воды, находящейся в свежевыжатых соках, и талой воды оказывает целебное и омолаживающее действие на организм. Именно такой водой лучше утолять жажду.
Минеральные воды целебны не составом растворенных в них веществ, а информацией, которую вода вобрала в себя, проходя сквозь толщу земли. Неорганические минеральные вещества, растворенные в воде, не усваиваются организмом и выводятся как чужеродный материал.
Усваивать неорганические вещества могут только растения, мы же пользуемся только теми минеральными веществами, которые прежде были переработаны растениями.
Вот что написано в «Чжуд-ши» о воде: «Вода бывает дождевой, снежной, речной, родниковой, колодезной, минеральной и древесной. Предыдущие в этом ряду лучше последующих. Вода, падающая с неба, не имеет вкуса, но приятна, насыщает, «прохладна», «легка», подобна эликсиру.
Вода, которая падает со снежных гор, хороша и так «холодна», что «огонь» ее с трудом нагревает, но когда застаивается, от нее бывают черви, рканг-бам и болезни сердца.
Вода на чистой земле, доступная солнцу и ветру, хороша.
Вода из болота, вода с водорослями, с корнями и листьями, находящаяся в тени деревьев, солончаковая вода, в которой купаются животные, порождает все болезни.
Холодная вода помогает при обмороках, похмелье, головокружении, рвоте, жажде, жаре тела, болезнях желчи и крови и отравлениях.
Кипяток согревает, способствует пищеварению, подавляет икоту, удаляет слизь, вздутие живота, одышку и свежую чхампу.
Охлажденный кипяток, не возбуждая слизи, удаляет желчь, но через день он становится как яд, и возбуждает все пороки.
Наблюдательность наших предков поразительна, а главное - жизненно приложима.
В условиях нормальной температуры и умеренных физических нагрузок человеку достаточно той воды, которая имеется в салатах и фруктах. Если растительной пищи потребляется мало, то человек, как правило, испытывает жажду и пьет много воды. Это приносит несомненный вред, так как усиливает нагрузку на сердце, почки и повышает процессы распада белка. Даже верблюд, находясь в пустыне, никогда не пьет воды впрок, а ровно столько, сколько было израсходовано.
Если все-таки хочется пить, особенно в переходный период, то утоляйте жажду вышеуказанными жидкостями.
Важно знать и следующее: потребление продуктов с высоким содержанием солей натрия способствует задержке воды в организме.
Соли калия и кальция, наоборот, выводят воду. Отсюда рекомендуется ограничить потребление соли и продуктов, содержащих натрий, при заболеваниях сердца и почек, а потреблять продукты, богатые калием и кальцием. При обезвоживании организма, наоборот, следует увеличить дозу продуктов с натрием и уменьшить с калием и кальцием.

БЕЛКИ

Белки - ложные азотосодержащие полимеры, мономерами которых служат  F128 и F255 -аминокислоты. Аминокислотный состав различных белков неодинаков и является важнейшей характеристикой каждого белка, а также критерием его ценности в питании.
Аминокислоты - органические соединения, в которых имеются две функциональные группы - карбоксильная («СООН», пределяющая кислотные свойства молекул, и амино  группа(«NН2»), придающая этим соединениям основные свойства.

В состав белка с наибольшим постоянством входят 20 аминокислот:
Незаменимые
1. Изолейцин
2. Лейцин
3. Лизин
4. Метионин
5. Фенилаланин
6. Треонин
7. Триптофан
8. Валин
9. Гистидин (для детей)
Заменимые
1. Глицин (гликокол)
2. Аланин
3. Серин
4. Глутаминовая к-та
5. Глутамин
6. Аспарагиновая к-та
7. Аспарагин
8. Аргинин
9. Пролин
10. Цистин
11. Тирозин


Основные функции белка в организме:
1. ПЛАСТИЧЕСКАЯ. Белки составляют около 15 - 20 процентов сырой массы различных тканей (жиры и углеводы лишь 1 - 5 процентов) и являются основным строительным материалом клеток, органов и межклеточного вещества. Белки наряду с жирами (фосфолипидами) образуют остов всех биологических мембран, играющих важную роль в построении клеток и их функционировании.
2. КАТАЛИТИЧЕСКАЯ. Белки - основной компонент всех без исключения известных в настоящее время ферментов. При этом простые ферменты представляют собой чисто белковые соединения.
Ферментам принадлежит решающая роль в ассимиляции пищевых веществ организмом человека и в регуляции всех внутриклеточных обменных процессов.
3. ГОРМОНАЛЬНАЯ. Значительная часть гормонов по своей природе - белки. К их числу принадлежит инсулин, гормоны гипофиза, паратиреоидный гормон.
4. ФУНКЦИЯ СПЕЦИФИЧНОСТИ. Чрезвычайное разнообразие и уникальность индивидуальных белков обеспечивают тканевую индивидуальность и видовую специфичность.
5. ТРАНСПОРТНАЯ. Белки участвуют в транспорте кровью кислорода, жиров, углеводов, некоторых витаминов, гормонов и других веществ. Специфические белки - переносчики обеспечивают транспорт различных минеральных солей и витаминов через мембраны клеток и внутриклеточные структуры.


В зависимости от пространственной структуры белки можно разделить на глобулярные (молекулы их имеют сферическую форму) и фибриллярные (состоят из вытянутых нитевидных молекул). К числу простых глобулярных белков относятся, в частности, альбумины, глобулины, проламины и глютелины. Альбумины и глобулины широко распространены в природе и составляют основную часть белков сыворотки крови, молока, яичного белка. Проламины и глютелины относятся к растительным белкам и встречаются в семенах злаков, образуя основную массу клейковины. Эти белки нерастворимы в воде. К проламинам относится глиадин пшеницы, зенин кукурузы, гордеин ячменя. Аминокислотный состав этих белков характеризуется низким содержанием лизина, а также треонина, метионина и триптофана и чрезвычайно высоким - глутаминовой кислоты.

Потребность человека в белках и аминокислотах

В мире не существует единых представлений о количественной характеристике этих норм даже применительно к близким категориям населения. Тем более, что мы знаем о дополнительном синтезе аминокислот в толстом кишечнике, которые вообще не учитываются при составлении белковых норм.
Вот что пишет на эту тему приверженец естественных методов оздоровления - натуропат А.Чупрун в газете «Советская Россия» от 27.11.86 г. в статье «Чем обедал папуас?»: «Человек растет, и его надо кормить - факт, не требующий особых комментариев. Поэтому сегодня так называемая «белковая проблема» не менее важна, чем изыскание новых источников энергии и сырья.Ученые всего мира тщательно изучают известные источники белка: дрожжи и плесень, микроскопические грибы и бактерии, водоросли, мицелий высших грибов и высших растений. Но вот парадокс: белковая проблема волнует кого угодно, кроме папуасов Новой Гвинеи. Почему же? А вот почему. До сих пор считалось (это отражено в учебниках по питанию), что в ежедневном рационе должно быть уж никак не меньше белка, чем организм требует, а для молодого, растущего человека - даже больше.
Папуасы же это правило успешно игнорируют  на протяжении всей жизни. Ученые, взявшиеся за исследование их пищи, были поражены: оказалось, что они даже не обеспечивают  «белкового равновесия», то есть папуас потребляет с пищей 20 - 30 граммов белка, расходуя в полтора раза больше! Не из воздуха же он берет недостающие 10 - 15 граммов?
Вот именно из ВОЗДУХА! Советские ученые М.Олейник и С.Панчишина, приведя эти данные в книге «Диcбактериоз кишечника», называют ряд бактерий, живущих в кишечнике любого человека - они способны фиксировать азот воздуха, растворенный в пищеварительных соках, и вырабатывать из него белок.
Почему же этого не происходит у других народов планеты? Видимо, все дело в составе пищи. Папуасы питаются в основном бататом (сладким картофелем), богатым сахарами и крахмалом, но содержащим так мало белка, что кишечные бактерии просто вынуждены использовать атмосферный азот, превращая его в аминокислоты - те «кирпичики», из которых уже может строить свои белки организм человека».
Как видно из статьи, этот необычный эксперимент поставлен самой Природой, папуасы живут на этом рационе не одно тысячелетие и на здоровье не жалуются. Это наглядный пример того, когда нормальная микрофлора играет роль «подсобного хозяйства». Если мы удовлетворяем нужды микробов, они могут нас легко прокормить. В нашем «цивилизованном»> мире, когда усвояемость аминокислот снижена из-за термической обработки, а микробы существенно отличаются от необходимых, белковая норма завышена.
Исследованиями последних лет доказано: биологическое действие и проявление анаболических (строительных) свойств животного белка в организме наиболее высоки и всесторонни при следующих сочетаниях белка и витамина С - на каждый грамм поступающего белка 1 миллиграмм витамина С. Если это условие не соблюдается, то усваивается столько белка, на сколько хватает витамина С, а оставшаяся часть гниет и идет на корм патогенной микрофлоре.
Вообще, вы должны знать, что нам надо только 4 проц. энергии по белку. Ее легко можно удовлетворить растительным питанием и причем с прекрасным набором аминокислот.

Для натуропатов приводится состав пищи, содержащей высокий процент белка.
Наилучшая пища:
орехи, семечки, проросшее зерно, пивные дрожжи.
Хорошая:
яйца, горох, бобы, рыба, сыр, грибы, свежее молоко.
Плохая:
все хлебные злаки, обдирные крупы, мясо, кипяченое и пастеризованное молоко.
Гидролиз белков (переваривание) происходит в желудке, кишечнике (поджелудочной железе).
Проиллюстрируем двумя наглядными примерами вредность потребления термически обработанных мясных продуктов.

Индуцированный автолиз

А.М.Уголев описывает такой опыт: «В прозрачную камеру, заполненную естественным желудочным соком человека, помещались «сырая» лягушка и лягушка после предварительной недолгой термической обработки. В первые несколько часов гидролиз сухожилий «обработанной» лягушки шел быстрее, однако в последующие два-три дня «сырая» лягушка полностью РАСТВОРИЛАСЬ, тогда как структуры термически обработанной сохранились».
Этим доказывалось, что белки естественные, не подвергнутые предварительной термической обработке, расщепляются гораздо быстрее и качественнее, чем денатурированные (видоизмененные термической обработкой, копчением, солкой и т.д.).
Выяснилось, что соляная кислота желудочного сока проникает в клетки пищи и вызывает разрушение лизосом (особые клеточные органы). В лизосомах клетки находятся ферменты - гидролазы, которые при создавшейся в ней рН среды от 3,5 до 5,5 (очень кислой) разрушают все клеточные структуры. Следовательно, желудочный сок индуцирует самопереваривание пищи ее же ферментами. Этот механизм существует как у хищных, так и растительноядных животных (рис. 9, 10).
Индуцированный автолиз усиливается при температуре 37 - 40 С. Под влиянием кислого желудочного сока происходит, во-первых, повышение проницаемости мембран; во-вторых, изменение активности протеолитических и других ферментов; в-третьих, изменяется состояние белковых клеток и тканей, в частности, их чувствительность к действию ферментов.
В отличие от поверхностного действия пищеварительных соков на пищевой объект в случае индуцированного автолиза имеет место «взрыв» тканей изнутри, поскольку автолиз индуцируется по всей толщине пищевого объекта. В этом случае происходит гидролитическое расщепление всех клеточных структур.
Оказалось, что около 50 процентов гидролиза определяется ферментами не желудочного сока, а самой автолизированной ткани.
Все животные используют аутолическое пищеварение, потребляя живые объекты (животные или растения), и только человек подвергает пищу термической обработке, «улучшая» ее.
Собственные ферменты пищеварительных соков особенно важны для утилизации структур, лишенных лизосом (белок соединительной ткани, жиры: полисахариды - у растений) с высокой скоростью.
Биохимик А.Паргетти обнаружил, что при приготовлении пищи на огне свыше 54 С в течение любого количества времени активность ферментов пропадает и автолиз становится невозможным.

Специфическое динамическое действие пищи

Под специфическим динамическим действием пищи (СДДП) подразумевается усиление обмена веществ после приема пищи по сравнению с уровнем основного обмена. Примерно через 15 - 30 минут после приема пищи происходит повышение обмена энергии, достигая максимума через 3 - 6 часов, и сохраняется в течение10 - 12 часов. Причем различные виды пищи по-разному влияют на это повышение. Жиры незначительно повышают обмен, а иногда и тормозят его. Углеводистая пища повышает его на 10 - 20 проц., а белковая еще больше - до 40 проц.
Чем вызвано такое большое повышение обмена энергии после приема белковой пищи? Для этого необходимо знать, сколько у взрослого человека расходуется пищевого белка на построение и замену изношенных тканей организма и сколько - на потребление энергии.
Давным-давно Рубнер опытным путем показал, что только 4 проц. общего обмена энергии идут на построение или прирост белка, а следовательно, белком могут быть покрыты. В среднем это будет 30 г белка в день на человека. А в 100 г мяса его 20 г. Прежде чем ответить на вопрос, куда же идет лишний белок, ответим на другой вопрос: что у нас используется в качестве основного «топлива»?
В качестве основного поставщика энергии у нас используется углевод. Упрощенно обозначим его См (Н2О)н. При окислении кислородом См (Н2О)н + мО2 = мСО2 +нН2О мы получаем свободную энергию, которую используем, а также углекислый газ СО2 и воду Н2О, которые легко выводятся из организма.
Молекула белка состоит из азота и углевода NсСм (Н2О)н. Отсюда, если белок использовать в качестве энергетического материала, то от него сначала надо отщепить азот, а затем использовать углевод как топливо, т.е. NсСм (Н2О)н + мО2 = Nс + мСО2 + нН2О.
В отличие от углеводов и жиров, азот в организме не может откладываться про запас и усиленно выводится из организма. Так, после белкового завтрака выводится до 50 процентов поступившего с пищей азота! В этом случае энергозатраты достигают таких размеров, что до 30 - 40 проц. калорийности пищи уходит на расщепление азота и выведение его из организма. А как нам известно, основной орган, выводящий азот из организма, - это почки. Поэтому «сверхплановая» работа быстро изнашивает их.
В результате реакций СДДП происходит не только интенсификация энергообмена и распада аминокислот (белка), но и изменение уровня глюкозы в крови, сдвиги водно-солевого баланса, изменение тонуса сосудов, вовлекаются гормональные системы.
А.Е.Браунштейн обратил внимание, что усвоение и обмен аминокислот (белка) требует значительного количества свободной энергии. На пути прохождения через организм каждый атом азота вызывает распад многих молекул АТФ и неорганического фосфата.
При сопоставлении скоростей синтеза и распада белка, а также кругооборота азота при диетах с низким и высоким содержанием белка, установлено, что при низкобелковой диете интенсивность кругооборота азота снижается на 18 проц. Отсюда видна роль СДДП для построения рациональных диет, а заодно дан ответ любителям мясной пищи, считающим ее поставщиком энергии.
18 проц., сэкономленных вами при переходе на малобелковый рацион, пойдут на укрепление и исцеление вашего организма.

УГЛЕВОДЫ

Углеводами называются органические соединения, имеющие в составе два типа функциональных групп: альдегидную, или кетонную, и спиртовую. Другими словами, углеводы - это соединения углерода, водорода и кислорода, причем водород и кислород входят в соотношение 2 : 1, как в воде, отсюда их название.
Животные и человек не синтезируют углеводы. В зеленых листьях при участии хлорофилла и солнечного света осуществляется ряд процессов между поглощением из воздуха двуокиси углерода и впитанной из почвы воды. Конечным продуктом этого процесса, называемого ассимиляцией, или фотосинтезом, является сложная молекула углевода. В ней Природа собрала солнечную энергию в химическую, которая впоследствии освобождается при распаде углевода в организме человека.
Углеводы подразделяются на моносахариды, олигосахариды и полисахариды.
МОНОСАХАРИДЫ (простые углеводы) - наиболее простые представители углеводов и при гидролизе не расщепляются до более простых соединений. Для человека наиболее важны глюкоза, фруктоза, галактоза, рибоза, дезоксирибоза и так далее.
ОЛИГОСАХАРИДЫ - более сложные соединения, построенные из нескольких (от 2 до 10) остатков моносахаридов. Наиболее важны для человека сахароза, мальтоза и лактоза.
ПОЛИСАХАРИДЫ  - высокомолекулярные соединения - полимеры, образованные из большого числа моносахаридов. Они делятся на перевариваемые и неперевариваемые в желудочно-кишечном тракте. К перевариваемым относят крахмал и гликоген, из вторых для человека важны клетчатка, гемилцеллюлоза и пектиновые вещества.
Моно - и олигосахариды обладают сладким вкусом, в связи с чем их называют  «сахарами!». Полисахариды сладким вкусом не обладают. Если сладость раствора сахарозы принимать за 100 проц., то сладость фруктозы 173 проц., глюкозы - 81 проц., мальтозы и галактозы - 32 проц. и лактозы -16 проц.
ГЛЮКОЗА - составная единица, из которой построены все важнейшие полисахариды - гликоген, крахмал и целлюлоза, также входит в состав сахарозы, лактозы и мальтозы. Она быстро всасывается в кровь из желудочно-кишечного тракта, а затем поступает в клетки органов, где вовлекается в процессы биологического окисления. Окисление глюкозы сопряжено с образованием значительных количеств АТФ.
Глюкоза - наиболее легко и быстро усваиваемый источник энергии для человека. Для своего усвоения она требует инсулина. Роль глюкозы особенно велика для центральной нервной системы, где она является главным источником окисления. Она легко превращается в гликоген.
ФРУКТОЗА менее распространена, чем глюкоза, и также быстро окисляется. Часть фруктозы в печени превращается в глюкозу, но для своего усвоения она не требует инсулина. Этим обстоятельством, а также значительно более медленным всасыванием фруктозы сравнительно с глюкозой в кишечнике объясняется лучшая переносимость ее больными сахарным диабетом.
ГАЛАКТОЗА входит в состав молочного сахара (лактозы). В организме человека большая часть ее превращается в печени в глюкозу, а также участвует в построении гемицеллюлозы.
Основными пищевыми источниками глюкозы и фруктозы служат мед, сладкие овощи и фрукты. Глюкоза и фруктоза содержатся во всех плодах. В семечковых преобладает фруктоза, а в косточковых (абрикосы, персики, сливы) - глюкоза. Ягоды отличаются наименьшим содержанием сахарозы. Количество фруктозы и глюкозы в них приблизительно одинаково.
Моносахариды непосредственно окисляются до двуокиси углерода и воды, тогда как белки и жиры окисляются до тех же продуктов через ряд сложных промежуточных процессов. Благодаря вышеуказанным свойствам, моносахариды - самый быстрый и качественный источник энергии для процессов, происходящих в клетке.
САХАРОЗА. Важнейший пищевой источник ее - сахар. Попадая в организм, она под влиянием кислот и энзимов легко разлагается на моносахариды. Но этот процесс возможен, если мы потребляем сырой свекольный или тростниковый сок. Обыкновенный сахар имеет более сложный процесс усвоения.
ЛАКТОЗА (молочный сахар) - основной углевод молока и молочных продуктов. Ее роль весьма значительна в раннем детском возрасте, когда молоко служит основным продуктом питания. При отсутствии или уменьшении фермента лактазы, расщепляющей лактозу до глюкозы и галактозы, в желудочно-кишечном тракте наступает непереносимость молока.
МАЛЬТОЗА (солодовый сахар) - промежуточный продукт расщепления крахмала и гликогена в желудочно-кишечном тракте. В свободном виде в пищевых продуктах она встречается в меде, солоде, пиве, патоке и проросшем зерне.
КРАХМАЛ - важнейший поставщик углеводов. Он образуется и накапливается в хлоропластах зеленых частей растения в форме маленьких зернышек, откуда путем гидролизных процессов переходит в водорастворимые сахара, которые легко переносятся через клеточные мембраны и таким образом попадают в другие части растения, в семена, корни, клубни и другие.
В организме человека крахмал сырых растений постепенно распадается в пищеварительном тракте, при этом распад начинается еще во рту. Слюна во рту частично превращает его в мальтозу. Вот почему хорошее пережевывание пищи и смачивание ее слюной имеет исключительно важное значение (помните правило - не пить во время еды). В кишечнике мальтоза гидролизируется до моносахаридов, которые проникают через стенки кишечника. Там они превращаются в фосфаты и в таком виде поступают в кровь. Дальнейший их путь - это путь моносахарида.
А вот о вареном крахмале отзывы у ведущих натуропатов Уокера и Шелтона отрицательны. Вот что говорит Уокер: «Молекула крахмала нерастворима ни в воде, ни в спирте, ни в эфире. Эти нерастворимые частицы крахмала, попадая в систему кровообращения, как бы засоряют кровь, прибавляя в нее своеобразную «крупу». Кровь в процессе циркуляции имеет тенденцию освобождаться от этой крупы, устраивая для нее складное место. Когда потребляется пища, богатая крахмалами, особенно белая мука, вследствие этого твердеют ткани печени».
Вопрос о крахмале и его роли в нашем здоровье сейчас основной, вспомните слова Павлова «кусок хлеба насущного ...».


Поэтому со всей тщательностью разберем его. Может, доктор Уокер сгущает краски?
Возьмем учебник для мединститутов «Гигиена питания» (М., Медицина, 1982 г.) К. С. Петровского и В. Д. Воиханена и почитаем раздел о крахмале (стр. 74). «В пищевых рационах человека на долю крахмала приходится около 80% общего количества потребляемых углеводов. Крахмал по химическому строению состоит из большого числа молекул моносахаридов. Сложность строения молекул полисахаридов является причиной их НЕРАСТВОРИМОСТИ. Крахмал обладает только свойством коллоидной растворимости. Ни в одном из обычных растворителей он не растворяется. Изучение коллоидных растворов крахмала показало, что раствор его состоит не из отдельных молекул крахмала, а их первичных частиц - мицелл, включающих большое количество молекул (их Уокер называет «крупой»).
В крахмале находятся две фракции полисахаридов - амилоза и амилопектин, резко различающиеся по свойствам.
Амилозы в крахмале 15 - 25%. Она растворяется в горячей воде (80 С), образуя прозрачный коллоидный раствор. Амилопектин составляет 75 - 85% крахмального зерна. В горячей воде он не растворяется, а лишь подвергается набуханию (требуя для этого жидкость из организма). Таким образом, при воздействии на крахмал горячей воды образуется раствор амилозы, который сгущен набухшим амилопектином. Полученная густая вязкая масса носит название клейстера (эта же картина наблюдается в нашем желудочно- кишечном тракте. И чем из более тонкого помола сделан хлеб и т. д., тем качественнее клейстер. Клейстер забивает микроворсинки 12- перстной и нижележащие отделы тонкой кишки, выключая их из пищеварения. В толстом кишечнике эта масса, обезвоживаясь, «прикипает» к стенке толстой кишки, образуя каловый камень).
Превращение крахмала в организме в основном направлено на удовлетворение потребности в сахаре. Крахмал превращается в глюкозу последовательно, через ряд промежуточных образований. Под влиянием ферментов (амилаза, диастаза) и кислот крахмал подвергается гидролизу с образованием дикстринов: сначала крахмал переходит в амилодекстрин, а затем в эритродекстрин, ахродекстрин, мальтодекстрин.
По мере этих превращений повышается степень растворимости в воде. Так, образующийся в начале амилодекстрин растворяется только в горячей, а эримодекстрин - и в холодной воде. Ахродекстрин и мальтодекстрин легко растворяются в любых условиях. Конечным превращением декстринов является образование мальтозы, представляющей собой солодовый сахар, обладающий всеми свойствами дисахаридов, в том числе хорошей растворимостью в воде.
Полученная мальтоза под влиянием ферментов превращается в глюкозу. Действительно, сложно и долго. И этот процесс легко нарушить, неправильно потребляя воду. К тому же совсем недавно ученые установили, что для образования в организме 1000 килокалорий из 250 граммов белка или углеводов должно израсходоваться значительное количество биологически активных веществ, в частности витамина В1 - 0,6 мг, В2 - 0,7, В3 (РР) - 6,6, С - 25 и так далее. То есть, для нормального усвоения пищи нужны витамины и микроэлементы, потому что их действия в организме взаимосвязаны.
Без соблюдения этого условия крахмал бродит, гниет, отравляя нас. Почти каждый ежедневно отхаркивается крахмалистой слизью, которая переполняет наш организм и вызывает бесконечные насморки и простуды. Если же вы, наоборот, будете в дневном рационе употреблять только 20% крахмалистых продуктов (а не 80%) и соблюдать соответственно к ним соотношение биологически активных веществ, вы, наоборот, будете дышать легко и наслаждаться здоровьем.
Если же вы не можете отказаться от термически обработанных крахмалистых продуктов (которые еще труднее усваиваются, чем сырые), то вот вам рекомендации Г. Шелтона: «Более 50 лет в практике гигиенистов было потреблять с крахмалистой пищей большое количество салата из сырых овощей (за исключением помидоров и другой зелени). Такой салат содержит изобилие витаминов и минеральных солей».
Сразу же рассмотрим и другой важный аспект этого вопроса. Какие крахмалистые продукты лучше всего использовать? Мы потребляем очень много хлеба, изготовленного из муки.
МУКА - пищевой продукт, получаемый мелким раздроблением эндосперма зерна хлебных злаков с большей или меньшей примесью его оболочек и зародыша. В итоге химический состав муки значительно отличается от зерна.
Характерной особенностью пшеничной муки является наличие в ней клейковины, образующейся при изготовлении теста и состоящей в основном из белков. От физических свойств клейковины зависит эластичность, пористость и объем хлеба.
А вот что показали исследования А.М.Уголева относительно клейковины. Оказалось, что при употреблении в пищу продуктов, ее содержащих, нарушается нормальная структура щеточной каймы - происходит атрофия микроворсинок. Естественно, при уменьшении микроворсинок уменьшается мощность ферментного слоя и страдает пристеночное пищеварение и всасывание пищевых веществ.
Так начинается САМОЕ ПЕРВОЕ звено в цепи самой разнообразной патологии. Нормализация структуры щеточной каймы происходит после лечения диетой, свободной от клейковины.
Ржаная мука отличается от пшеничной наличием слизей (веществ углеводистой природы), содержит меньше белка, больше сахара, не образует клейковины.
Мука, не образующая клейковины: овсяная, кукурузная, просяная. В качестве использования крахмалистых продуктов рекомендуются крупы: овсяная, пшено, гречневая, рис.
Большое место помимо хлеба в нашем питании отводится картофелю. Ознакомимся с этим продуктом подробнее.
В состав картофеля входит крахмал (18 - 20%). Но в картофеле содержится и ядовитое вещество - соланин. Особенно его много в ботве и ягодах, в позеленевших, загнивших и проросших клубнях, что может вызвать отравление. В зрелых свежих клубнях он содержится в безвредных количествах (но все-таки есть).

А вот еще интересные данные.
Картофель молодой (до 1 сентября): съедобная часть - 85%, углеводы - 17,8.
Картофель молодой (с 1 сентября до 1 января): съедобная часть - 75%, углеводы - 15,8.
Картофель с 1 января до 1 марта: съедобная часть 70%, углеводы - 14,7.
Картофель с 1 марта: съедобная часть 60%, углеводы  - 12,6.
Как видно из этого краткого обзора, картофель довольно-таки посредственный продукт, который лучше всего есть максимум до 1 января.

Старайтесь шире в своем питании использовать продукты, содержащие естественную глюкозу, фруктозу и сахарозу. Наибольшее количество сахара содержится в овощах, фруктах и сухофруктах, а также проросшем зерне.
Гидролиз углеводов происходит в ротовой полости и в кишечнике с помощью ферментов поджелудочной железы.

ПИЩЕВЫЕ ВОЛОКНА (целлюлоза, клетчатка, геми-целлюлоза и пектиновые вещества); другое их название - устаревшее балластные вещества, широко распространены в растительных тканях. Их роль сводится к
следующему:
а) формирование гелеобразных структур, что влияет на опорожнение желудка, скорость всасывания в тонкой кишке и время транзита через желудочно-кишечный тракт;
б) способность пищевых волокон удерживать воду (предотвращает образование каловых камней), меняет давление в полости органов пищеварительной системы, электролитный состав и массу фекалиев, увеличивая их вес;
в) способность волокон адсорбировать желчные кислоты и таким образом влиять на их распределение вдоль желудочно-кишечного тракта и обратное всасывание их, что существенно отражается на потере стероидов с калом и обмене холестерина в целом. При увеличении количества пищевых волокон в рационе снижается уровень холестерина в крови. Это связано с участием пищевых волокон в кругообороте желчных кислот. При отсутствии поступления пищевых волокон нарушается не только обмен желчных кислот (отсюда понижение гемоглобина в крови), но и холестерина и стероидных гормонов;
г) большое значение для электролитического обмена в организме и в желудочно-кишечном тракте имеют катионообменные свойства кислых полисахаридов, антиоксидантный (противоокислительный) эффект лингина;
д) влияние пищевых волокон на среду обитания бактерий в кишечнике. Переваривание 50% пищевых волокон, поступающих в кишечник, реализуется микрофлорой толстой кишки. Пищевые волокна нужны для нормального функционирования не только пищеварительной системы, но и всего организма;
е) отсутствие пищевых волокон в диете может провоцировать рак толстой кишки и других отделов кишечника. Показан также антитоксический эффект растительных волокон. Они способны адсорбировать и выводить из организма различные соединения, в том числе экзо- и эндогенные токсины, тяжелые металлы;
ж) атеросклероз, гипертония, диабет - недостаток пищевых волокон. В ряде стран интенсивно вводят в пищевую промышленность пищевые волокна.
Условно пищевые волокна можно разделить на нежные (картофель, капуста, яблоки, абрикосы и другие подобные продукты), которые расщепляются и достаточно полно усваиваются, и на грубые (морковь, свекла и другие) - менее усваиваемые. Но когда пищеварительный тракт войдет в нужную силу, и они будут прекрасно усваиваться.
Наиболее сильное изменение с пищевыми волокнами происходит в толстом кишечнике под влиянием бактериальной флоры.

          ЖИРЫ

Термин «жиры» подразумевает вещества, состоящие из глицерина и жирных кислот, соединенных эфирными связями.
В более доступной для нас терминологии - это вещества, в состав которых входит углерод, водород и кислород. По насыщенности жирными кислотами они делятся на две большие группы: твердые жиры (сало, смалец, сливочное масло), которые содержат насыщенные жирные кислоты, и жидкие жиры (масло подсолнечное, оливковое, из орехов, из косточек и так далее), содержащие в основном ненасыщенные жирные кислоты.
Полинасыщенные жирные кислоты: линолевая, линоленовая и арахидоновая - относятся к незаменимым факторам питания, так как в организме они не синтезируются и потому должны поступать с пищей. Эти кислоты по своим биологическим свойствам относятся к жизненно необходимым веществам и даже рассматриваются как витамины (витамин F).
Физиологическая роль и биологическое значение этих кислот многообразны. Важнейшие биологические свойства ненасыщенных данных кислот - участие их в качестве структурных элементов в таких высокоактивных комплексах, как фосфолипиды, липопротеиды и другие. Они необходимый элемент в образовании клеточных мембран, миелиновых оболочек, соединительной ткани и других.
Арахидоновая кислота предшествует образованию веществ, участвующих в регуляции многих процессов жизнедеятельности тромбоцитов и других, но особенно простагландинов, которым придают большое значение как веществам высочайшей биологической активности. Простагландины обладают гормоноподобным действием, в связи с чем получили название «гормонов тканей», т.к. они синтезируются непосредственно из фосфолипидов мембран. Синтез простагландинов зависит от обеспечения организмом этих кислот.
Установлена связь ненасыщенных жирных кислот с обменом холестерина. Они способствуют быстрому преобразованию холестерина в фолиевые кислоты и выведению их из организма.
Ненасыщенные жирные кислоты оказывают нормализующее действие на стенки кровеносных сосудов, повышают их эластичность и снижают проницаемость.

Установлена связь ненасыщенных жирных кислот с обменом витаминов группы В.
При дефиците ненасыщенных жирных кислот снижается интенсивность роста и устойчивость к неблагоприятным внешним и внутренним факторам, угнетается репродуктивная функция, недостаточность ненасыщенных жирных кислот оказывает влияние на сократительную способность миокарда, вызывает поражение кожи.
Жиры содержат жирорастворимые витамины. Животные жиры поставляют витамины A и D, растительные - E.
Растительные жиры имеют высокое энергетическое состояние, т.е. образуются при фотосинтезе в зеленых частях растений и после этого откладываются в плодах и семенах. При своем расщеплении они освобождают (1 г - 9 ккал) вдвое больше энергии, чем белки и углеводы.
Масло орехов является источником хорошо усваиваемых эмульгированных жиров. Если есть достаточно орехов, нет необходимости добавлять в рацион какие-либо масла.
Масло же желательно применять полученное холодным прессованием. Рафинированное масло, лишенное микроэлементов и витаминов, надо исключить. К тому же в полученном масле - ненасыщенные жирные кислоты легко окисляются, в масле накапливаются окисленные продукты, которые ведут к его порче.
Животные жиры содержат токсические включения, которые при расщеплении попадают в организм. Ведь жировая ткань как животных, так и человека является «отстойником», так как в ней наименьший обмен веществ. По этой причине организм, чтобы освободиться от токсинов, откладывает их в жировую ткань, где они «хоронятся».
Дневная норма в жировых продуктах удовлетворяется 25 - 30 г растительного или сливочного масла.
Гидролиз жиров происходит в 12-перстной кишке.

ВИТАМИНЫ

Витаминами называются низкомолекулярные соединения органической природы, не синтезируемые в организме человека, поступающие извне, в составе пищи, не обладающие энергетическими и пластическими свойствами, проявляющие биологическое действие в малых дозах.
Витамины образуются путем биосинтеза в растительных клетках и тканях. Большинство из них связано с белковыми носителями. Обычно в растениях они находятся не в активной, но высокоорганизованной форме и, по данным исследований, в самой подходящей форме для использования организмом, а именно - в виде провитаминов. Их роль сводится к полному, экономичному и правильному использованию основных питательных веществ, при котором органические вещества пищи высвобождают необходимую энергию.
Недостаток витаминов вызывает тяжелые расстройства. Мной систематизированы основные виды витаминной недостаточности .
Скрытые формы витаминной недостаточности не имеют каких-либовнешних проявлений и симптомов, но оказывают отрицательное влияние на работоспособность, общий тонус организма и его устойчивость к разным неблагоприятным факторам. Удлиняется период выздоровления после перенесенных заболеваний, а также возможны различные осложнения.
В основу классификации витаминов положен принцип растворимости их в воде и жире, в связи с чем они делятся на две большие группы - водорастворимые и жирорастворимые.
Водорастворимые витамины участвуют в структуре и функционировании ферментов.
Жирорастворимые витамины входят в структуру мембранных систем, обеспечивая их оптимальное функциональное состояние.

Жирорастворимые витамины:
Витамин А (ретинол),
Провитамины А (каротины),
Витамин D (кальцеферолы),
-- --Е (токоферолы),
-- -- K (филлохиноны).

Водорастворимые витамины:
B1 (тиамин),
B2 (рибофлавин),
PP (никотиновая кислота),
B3 (пантотеновая кислота),
B6 (пиридоксин),
B12 (цинкобаламин),
Bc (фолиевая кислота),
H (биотин),
N (липоева кислота),
P (биофлаваноиды),
C (аскорбиновая кислота).

Витаминоподобные вещества:
B13 (оротовая кислота),
B15 (пангамовая кислота),
B4 (холин),
B8 инозитол),
Bт (карнитин),
H1 (параминбензойная кислота),
F (полинасыщенные жирные кислоты),
U (S=метилметионин--сульфат--хлорид).

Витамин А

Он содержится только в продуктах животного происхождения. В чистом виде это кристаллическое вещество светло-желтого цвета, хорошо растворяется в жире. Неустойчив к действию кислот, ультрафиолету, кислороду воздуха.
Растительные пигменты каротиноиды играют роль провитамина А. Каротиноиды (от латинского сагота - морковь) относятся к углеводородным соединениям, которые в растениях обычно связаны с белками.
Превращение каротина в витамин А происходит в стенке тонких кишок и
в печени.

Физиологическое значение витамина А. Витамин А оказывает влияние на развитие молодых организмов, состояние эпителиальной ткани, на процессы роста и формирования скелета, ночное зрение. Так, адаптация зрения к условиям различной освещенности длится около 8 минут при нормальных запасах витамина А и 30 - 40 минут - при уменьшении их наполовину. Витамин А участвует в нормализации состояния и функции биологических мембран.
В сочетании с витамином C он вызывает уменьшение липоидных отложений в стенках сосудов и снижение содержания холестерина в сыворотке крови.
Особенно витамин А нужен щитовидной железе, печени и надпочечникам. Он один из витаминов, сохраняющих молодость. Например, он продлевает жизнь подопытным животным.
Особенно много витамина А в печени морских животных. Вот почему препараты из печени этих животных (например, «катрэкс» - из печени черноморской акулы катрана) очень ценны.

Витамин А нужен ушам. Его нехватка может привести к ушным инфекциям и отразиться на механизме слуха. Его с большим успехом применяют в аллергической терапии. Установлено, что приступ сенной лихорадки можно полностью отразить принятием 150 000 МЕ (1МЕ=0,3 мг.) витамина А. Зарубежные врачи называют его « линией обороны от болезней», так как целостность покровов и эпителия внутри тела, нормальная их работа - первое условие здоровья.
Недостаток витамина А широко распространен. Из-за этого происходит замедление реакции организма (спортсменам на заметку). Так, в ФРГ проводились опыты с 152 шоферами, которые или не прошли водительские испытания, или имели наибольший список дорожных происшествий. Им давали ежедневно по 150 000 МЕ витамина А, что привело как сообщает Институт психологии транспорта, к значительному усилению их водительских способностей.
Вообще проблема дефицита витамина А остро стоит во всем мире. Производится лечение витамином А. Так, в Индии детям в возрасте 1 - 5 лет раз в полгода дают по 110 миллиграммов витамина А (200 000 МЕ, или 40 взрослых  норм сразу!). Среди детей, получивших две дозы, заболеваемость глаз сократилась на 75 проц.

Запасы витамина А могут в печени составлять резерв 500-дневной потребности. Они откладываются там в форме эфира высших жирных кислот: олеиновой, пальмитиновой и стеариновой, и, возможно по этой причине, несмотря на столь высокие запасы, не наблюдается явлений гипервитаминоза. Заметим, что витамин А накапливается в печени из каротина, но не из витаминной диеты. Среди сельского населения острова Ява, питающегося неполированным рисом, зелеными овощами и фруктами, не наблюдается признаков нехватки витамина А. Наоборот, установлено, что снабжение витамином А достаточно полноценно, хотя их пища не содержит молока, масла и почти лишена яиц.
Потребность в витамине А составляет 1,5 мг/сутки, что равняется приблизительно 5000 МЕ (1 МЕ=0,3 мг), причем не менее 1/3 потребности должно быть удовлетворено за счет самого витамина А, а 2/3 - за счет b -каротина.
Гипервитаминоз витамина А встречается крайне редко, так как нужны необычайно высокие дозы, поступление которых в жизни трудно осуществить. Вот один из таких случаев.

Английская газета «Таймс» сообщила о смерти ученого Б. Брауна, 48 лет. В статье под заголовком «Морковная диета убила ученого» говорилось: «Как установило расследование в Кройдоне, сторонник здоровой пищи, выпивавший по восемь пинт (пинта - 0,56 литра) морковного сока в день, был совершенно желтого цвета, когда умер. Врач заявил, что Б. Браун умер от отравления витамином А».
Уменьшают запасы витамина А алкоголь, канцерогены, висмут; сильное уменьшение в диете белка (с 18 до 3 процентов) уменьшает отложение этого витамина в печени более чем в 2 раза).
Разрушает его кислород воздуха, кислоты, ультрафиолетовые лучи. Прогоркание жиров ведет к разрушению витамина А.
Важнейшие источники витамина А: печень, сливочное масло, сливки, сыр, яичный желток, рыбий жир. При тепловой обработке витамин А значительно разрушается.

Каротин

Каротин - ненасыщенный углеводород, оранжево-желтый пигмент. Поэтому он находится в плодах, листьях цветков, имеющих оранжево- желтый пигмент (окраску). Белок, связанный с каротином, является важнейшим фактором химической стабилизации его. В растворе, особенно при облучении и доступе кислорода, каротин легко разрушается.

Физиологическое значение. Это прежде всего возможность снижения канцерогенного риска от облучения и табачного дыма путем регулярного употребления моркови. Часть b -каротина, который не превращается в организме в витамин А, выполняет особые защитные функции. Уже теперь умеренное и регулярное употребление красной моркови и сока можно рекомендовать в качестве фактора, снижающего риск развития преждевременного старения и опухолей.(Эта ценнейшая информация о каротине взята мной из книги М. М. Виленчика «Биологические основы старения и долголетия».) Полагают, что каротин усиливает действие половых гормонов. Содержание в плазме крови человека каротина колеблется от 80 до 230 мг% и зависит от поступления с пищей.
При некоторых заболеваниях - экзема, спру содержание каротина в крови составляет 8 - 30 мг%. В организме человека он откладывается в печени, сердце, нервной ткани, костном мозгу, семенниках, яичниках, кожеособенно в стопах и ладонях.
В виде масляного раствора  b - каротин в два раза менее активен, чем витамин А.
Исключительно важным фактором усвоения каротина является наличие в кишечнике желчи. Дети усваивают его хуже чем взрослые. При очень больших дозах искусственного каротина усваивается 1 - 2 процента. В отличие от витамина А каротин в больших дозах нетоксичен и не вызывает гипервитаминоза.
О важности в нашем питании витамина А и каротина говорят следующие факты. По данным ВОЗ, от ОРЗ, насморка, отита, ангины, бронхита, пневмонии, возникающих из-за нехватки витамина А, свыше 1 миллиона мужчин 40 - 60-летнего возраста становятся инвалидами. Образование слюнного камня на зубах, как считают специалисты, есть внешний признак скрытых патологических процессов: образование камней в печени и почках вследствие нарушения обмена веществ при перерождении слизистых оболочек и развития воспалительных заболеваний. Вспомните из раздела о пищеварении, как быстро слущивается эпителий желудочно-кишечного тракта, и если он полноценно не успевает восстанавливаться, приходят самые разнообразные заболевания. Тут и язвы, и несварение, и полипы, и злокачественные новообразования.

Причин появления дефицита витамина А и каротина много: неполноценное питание, низкое содержание в продуктах, нарушение усвоения или повышенное потребление при заболеваниях, беременности, спортивных тренировках, у детей в период интенсивного роста - 2 - 5 лет и полового созревания.
В качестве профилактики регулярно на завтрак ешьте салат, содержащий много моркови, или пейте морковный сок. Такого режима питания придерживался Поль Брегг. Вот что он пишет в своей всемирно известной книге «Чудо голодания»: «Примерно через час после этого совершаю мой первый за день прием пищи, обычно это салат из свежих овощей на основе моркови, капусты и зелени». Именно в этих продуктах каротина предостаточно.
Суточная норма b -каротина 6000 МЕ. Рекордсмены по содержанию b -каротина: щавель, тыква витаминная, морковь и, особенно, облепиховое масло.

Витамин D

Известны около семи веществ, обладающих антирахитической активностью, из которых витамин D наиважнейший. При действии на кожу ультрафиолетовых лучей образуется холекальциферол (витамин D3) из своего провитамина, содержание которого особенно высоко в коже, обладающей высокой витаминной активностью. В растительных организмах содержится эргостерин, являющийся провитамином D.

Физиологическое значение. Витамин D нормализует всасывание из кишечника солей кальция и фосфора, способствует отложению в костях фосфора и фосфата кальция (то есть укрепляет зубы) и препятствует заболеванию рахитом.
Имеются также указания на роль витамина D в определении ряда свойств мембран клетки и субклеточных структур, в частности их проницаемости для ионов кальция и других катионов.
Суточная потребность в витамине D взрослых людей, детей старше 3 лет, составляет 100 МЕ, детей до 3 лет - 400 МЕ.
Высокое содержание витамина D - в зародышах зерновых, зеленых листьях, пивных дрожжах, рыбьем жире. Богаты им яйца, сливочное масло, молоко. Провитамин D содержится в белокочанной капусте и в небольшом количестве - в моркови.
Применение с лечебной целью, а также в качестве профилактики витамина D требует предосторожности: он токсичен.

Витамин Е

Другое название витамина Е - токоферол. По биологическому действию токоферолы делятся на вещества витаминной и антиокислительной активности.

Физиологическое значение. Оно заключается в его антитоксическом действии на внутриклеточные липидные (жиры). Окисление внутриклеточных липидов обусловливает образование токсических для клетки веществ из расщепленных ненасыщенных жирных кислот. Они могут привести к нарушению функции клетки и затем к ее гибели. Эти токсические вещества подавляют действие ферментов и витаминов. Витамин Е тесно связан с состоянием и функцией биологических мембран, а также препятствует разрушению эритроцитов. Важнейшим свойством токоферолов является их способность повышать накопление во внутренних органах жирорастворимых витаминов, особенно А.
Токоферолы способствуют активизации процессов синтеза АТФ. Установлена тесная связь токоферолов с функцией и состоянием эндокринных систем, особенно половых желез, гипофиза, надпочечников и щитовидной железы.
Они принимают участие в обмене белка. Достаточный уровень токоферолово способствует развитию мышц и нормализует мышечную деятельность, предотвращая развитие мышечной слабости и утомления. Эта способность широко используется в спортивной медицине как средство нормализации мышечной деятельности в период «ударных» тренировок.
Увеличивает долголетие и функцию размножения. Витамин Е называют токоферолами, от греческого слова toko - потомство и латинского Ferre - приносить. Само название говорит о том, что витамин Е играет важную роль в воспроизводительной функции организма. Он способствует нормальному течению беременности и развитию плода, а также активно участвует в процессах образования спермы.
Суточная потребность взрослых в витамине Е примерно 12 - 15 мг. Им богаты растительные масла, зародыши злаков, зеленые овощи.

Витамин K

К витаминам группы K относятся природные вещества - витамин K1 (филлохинон) и витамин K2 (мелахинон). Свое название витамин K получил от слова «коагуляция» (свертываемость).

Физиологическое значение. Эти витамины участвуют в процессах свертывания крови. Также проявляют анаболитическое действие путем участия в продукции АТФ, что важно в нормальном энергообеспечении организма.
Вообще в витамине K нуждается каждая клетка организма, поскольку он имеет большое значение для сохранения структурных, функциональных свойств клеточных мембран и органелл.
У взрослых витамин K синтезируется микрофлорой кишечника (до 1,5 мг в сутки), поэтому у них возможен вторичный дефицит витамина K в кишечнике вследствие прекращения его синтеза микрофлорой.
Наиболее частой причиной авитаминоза K являются болезни печени. Витамин K содержится в зеленых листьях салата, капусты, крапивы, люцерне. Под влиянием солнечного света зеленые листья растений синтезирут его. Из микроорганизмов кишечного тракта, синтезирующих витамин K, наибольшее значение имеет кишечная палочка, населяющая толстую кишку.

Витамин B1

Этот витамин относится к серосодержащим веществам. В чистом виде это бесцветные кристаллы с запахом дрожжей, хорошо растворимые в воде. При хлебопечении его потери составляют 10 - 30 проц., если не употребляются химические и щелочные разрыхлители.

Физиологическое действие. Важнейшая сторона биологического действия B1 - его участие в обмене углеводов. При его недостатке происходит неполное усвоение углеводов и накопление в организме продуктов их промежуточного обмена - молочной и пировиноградной кислот. B1 играет важную роль в белковом обмене: катализирует отщепление карбоксильных групп и участвует в процессах дезаминирования и переаминирования аминокислот.
Вовлекается в жировой обмен, участвуя в синтезе жирных кислот (которые не дают образовываться камням в печени и желчном пузыре). Усиливает превращение углеводов в жир.
Воздействует на функцию органов пищеварения, повышает двигательную и секреторную функцию желудка, ускоряет эвакуацию его содержимого.
Нормализующе влияет на работу сердца.
Суточная потребность от 1,3 до 2,6 мг (0,6 мг на 1000 ккал).
Источником B1 служат зерновые, не освобожденные от зародышей; пивные дрожжи и печень.

Витамин B2

Витамин B2 относится к флавинам - естественным пигментам овощей, картофеля, молока и других. Чистый витамин B2 представляет собой оранжево-желтый порошок горького вкуса, трудно растворимый в воде, легко разрушающийся на свету. У человека B2 может синтезироваться  микрофлорой кишечника.

Физиологическое значение. Основное физиологическое значение B2 заключается в его участии в качестве составной части флавопротеидов. Витамин B2, присутствующий в органах, на 80 проц. состоит из флавопротеидов. Поступая с пищей, в кишечной стенке, а также в печени и клетках крови, он подвергается переводу в активно действующее вещество - коферменты. Эти коферменты являются постоянной частью дыхательных ферментов. Он также участвует в ферментативных системах, регулирующих процессы окисления и восстановления в ткани (дыхание и его тренировка).
Важнейшим свойством B2 является его участие в процессах роста, его можно рассматривать как ростовой фактор. B2 играет важную роль в белковом обмене, а также в обмене углеводов и жиров. Он способствует наиболее полному расщеплению углеводов. Преимущественно углеводное питание повышает потребность в витамине B2.
В связи с темой правильного питания этот абзац играет огромное значение. Мы будем потреблять каши. Так вот, чтобы от них не возникали самые разнообразные расстройства, чтобы не было слизистых выделений из носа и вы не откашливались крахмалистой слизью, помните о витаминах группы B и сочетайте их с крахмалистой пищей. Только в этом случае все будет нормально.
При обильном жировом питании также резко возрастает потребность в нем. B2 оказывает нормализующее влияние на функцию органов зрения. Он повышает темновую адаптацию, улучшает ночное зрение и повышает остроту зрения на цвет.
Суточная потребность - 0,8 мг на 1000 ккал.
ажнейшие пищевые источники B2: яйца, печень, гречневая и овсяная крупы, проросшие зерна.

Витамин PP

По своим физико-химическим  свойствам PP представляет собой белые игольчатые кристаллы без запаха, кисловатого вкуса; весьма устойчив во внешней среде.

Физиологическое значение. PP входит в состав группы ферментов, переносящих водород, и таким образом участвует в реакции клеточного дыхания (дыхание и его тренировка) и во всех реакциях межуточного обмена.
PP оказывает влияние на работу органов пищеварения: нормализует секреторную и моторную функцию желудка (лицам с расстройством желудочной секреции и атонией желудка - на заметку), улучшает секрецию и состав сока поджелудочной железы (диабетикам - на заметку), нормализует функцию печени, ее антитоксическую функцию, пигментообразование, накопление гликогена.
Под влиянием PP в организме повышается использование растительных белков пищи.
Потребность в PP - 6,6 мг на 1000 ккал пищи.
Много витамин PP в гречке, горохе, мясе, проросшем зерне и пивных дрожжах.

Витамин B3

В чистом виде B3 представляет собой жидкость желтого цвета, хорошо растворимую в воде. Устойчив к свету, кислороду воздуха, стабилен в нейтральном растворе.

Физиологическое значение. Оно очень многообразное. Укажем на основное: регулирует функцию нервной системы и нервно-питательных процессов, расстройство которых влечет за собой появление дерматита и других нарушений.
B3 связан с функцией щитовидной железы: ее тироксин необходим для синтеза коэнзима А из витамин B3. Влияет на функцию надпочечников, при недостатке отмечается нарушение синтеза гликокортикоидов.
Потребность - 5 - 10 мг/сутки, помимо того, что синтезируется микрофлорой в кишечнике.
Источники витамина B3: пивные дрожжи, яйца, проросшее зерно.

Витамин B6

Он представляет собой бесцветные кристаллы, хорошо растворимые в воде. До 50 проц. витамина B6 теряется при стерилизации молока и обработке его на ионитных смолах.

Физиологическое значение. Он принимает участие в обмене веществ, особенно в обмене белков и построении ферментов.
B6 играет большую роль в обмене жиров. При лечении дерматитов отмечен лучший терапевтический эффект от совместного применения B6 и ненасыщенных жирных кислот.
Недостаток B6 в рационе способствует жировой инфильтрации печени. Исследования, проведенные на обезьянах, длительное время получавших рацион с недостаточным содержанием B6, выявили развитие у них выраженного атеросклероза с преимущественным поражением коронарных сосудов.
B6 играет большое значение в кроветворении.
Он также влияет на кислотообразующие функции желудочных желез. Высокий уровень B6 в питании способствует повышению кислотности и желудочной секреции (страдающим пониженной кислотностью - на заметку).
Суточная потребность - 1,5 - 3 мг. Повышенная потребность в нем у беременных, а также у пожилых людей при прогрессировании процессов старения.
Высоко содержание его в пивных дрожжах, печени, твороге, картофеле, гречке, горохе, капусте.

Витамин H

В чистом виде витамин H представляет собой кристаллы игольчатой формы, хорошо растворимые в воде и устойчивые к нагреванию, кислороду воздуха и действию щелочей и кислот.

Физиологическое значение. По-видимому, оказывает регулирующее влияние на нервную систему, в том числе на нервнотрофическую функцию. Имеются данные об участии биотина (витамин H) в жировом обмене.
Содержащийся в яичном белке альбумин авидан обладает способностью вступать в кишечнике в прочную связь с витамином H, образуя труднорасщепляемое соединение. Такая связанная форма биотина не используется организмом и не проявляет витаминного действия. Таким образом, токсикоз, возникающий при введении больших количеств сырого яичного белка, служит проявлением H-витаминной недостаточности.
Суточная потребность в витамине H определена в количестве 0,15 - 0,3
мг. Удовлетворяется не только за счет поступления витамина H в составе пищи, но и, в частности, за счет биосинтеза кишечной микрофлорой.
Источники витамина H: яйца, крупа овсяная, горох.

Витамин Bc или В5

Он находится в листьях растений, с чем и связано его название. В чистом виде представляет собой пластинчатые кристаллы оранжево- желтого цвета, плохо растворимые в воде и не устойчивые к нагреванию и действию света.

Физиологическое значение. Витамин Bc, как и витамин B12, оказывает
влияние на синтез нуклеиновых кислот, пуринов, некоторых аминокислот, а также холина.
Вместе с витамином B12 находится в хромосомах и служит важным фактором размножения клеток.
Bc стимулирует и регулирует кроветворение, способствует увеличению числа лейкоцитов. Под его влиянием снижается содержание холестерина в сыворотке крови.
Суточная потребность в витамине ориентировочно 200 мкг. Невысокое содержание Bc в продуктах питания и крайняя его неустойчивость при тепловой обработке существенно затрудняет удовлетворение потребности в нем. Недостающее количество дополняется за счет синтеза микрофлорой кишечника.
Содержат Bc пивные дрожжи, печень, петрушка (зелень), салат, лук- перо.

Витамин B12

В чистом виде это красное кристаллическое вещество в виде игл или призм без вкуса и запаха. Теряет свою активность под действием света.

Физиологическое значение. Основное значение B12 - в его антианемическом действии, к тому же он оказывает существенное влияние на процессы обмена веществ - белков, синтез аминокислот, нуклеиновых кислот, пуринов.
У детей B12 стимулирует рост и вызывает улучшение их общего состояния (родителям и детям - на заметку).
Невозможность использования в организме B12 возникает в результате атрофии железистых клеток дна желудка, продуцирующих гастромукопротеин, который является обязательным компонентом, обеспечивающим усвоение этого витамина организмом. Глистные инвазии могут полностью его захватить и лишить организм витамина B12.
Суточная потребность B12 - 3 мкг. Как утверждает одна часть медиков, содержится он только в животных продуктах: печени, скумбрии, сардинах, сельди атлантической, нежирном твороге, курятине, говядине, яйцах. Натуропаты же утверждают ( «Солнечная пища на вашем столе»), что он синтезируется нормальной микрофлорой кишечника. В этом случае удовлетворение в витамине B12 происходит за счет синтеза его кишечной микрофлорой из кобальта, поступающего с пищей.

Помните следующее: при потреблении белого хлеба, в котором мало клетчатки, необходимой для нормального существования микрофлоры, но зато имеются дрожжи пекарские, синтез витамина B12 будет нарушен. В итоге вы получите такую картину, как при питании только растительной пищей и хлебом. В растениях его нет, а выработать микрофлорой тоже не можете -дрожжи его разрушают. В результате получите не оздоровление, а малокровие и нарушения в нервной системе. эта одна из ошибок вегетарианцев, дрожжевой хлеб замените пресным или, что гораздо лучше, цельными крупами.
Витамины группы «B» определяют общее состояние здоровья. Если они поступают в достаточном количестве, то человеческий организм может жить без животных белков, что особенно важно при аллергиях. Когда же их не хватает, остальные витамины теряют большую часть своего значения и действия.
Полное снабжение витаминами группы «B» обеспечивается приемом пищи, в состав которой входят зеленолистные растения, цельное зерно, проросшее зерно, пивные дрожжи, орехи.

Витамин C

В чистом виде это белое кристаллическое вещество кислого вкуса, без запаха, хорошо растворимое в воде.
Основное количество (до 70 проц.) витамина C в растениях представлено в виде аскорбигена, который является связанной формой витамина С, наиболее устойчивой к окислению. Возможно, наличием аскорбигена можно объяснить стойкую витаминную активность плодов и овощей.
Хотя витамин C входит в группу водорастворимых витаминов, он обладает тремя индивидуальными особенностями, существенно выделяющими его из этой группы:
1) отсутствие в биологическом действии витамина C коферментных функций, то есть отсутствие ферментной системы, в которую витамин C входил бы в качестве специфического, целенаправленного, структурного компонента данного кофермента;
2)  витамин C постоянно входит в белковую часть ферментных систем (апофермент) и таким образом участвует в синтезе белковой части всех ферментов, чем и объясняется широкий спектр его биологического действия;
3)  неспособность эндогенного синтеза витамина C в организме человека.

Физиологическое значение. Биологическая роль витамина C в организме в основном связана с окислительно-восстановительным действием.
Витамин C представляет особый интерес благодаря непосредственной связи с белковым обменом. При дефиците витамина C в организме снижается использование белка, а потребность в нем возрастает.
Соответственно, при белковой недостаточности, в частности при недостатке животного белка, нарушается нормальное восстановление тканями дегидроаскорбиновой кислоты в витамине C и повышается потребность в витамине C.
Витамин C играет важную роль в поддержании нормального состояния стенок капилляров и сохранения их эластичности. При недостатке его наблюдается повышенная ломкость капилляров и склонность к кровоизлияниям. Это хорошо наблюдается при чистке зубов, если появляется кровотечение, то вы находитесь в состоянии незначительного дефицита витамина C.
Высокий уровень витамина C в организме способствует наиболее полному созданию гликогенных запасов в печени и повышению ее антитоксической функции.
Высоким содержанием и высокой потребностью в витамине C характеризуются эндокринные системы (гипофиз, гипоталамус, надпочечники и другие железы).
Повышенной потребностью и высоким содержанием витамина C отличаются внутриклеточные мембранные системы. Наиболее богаты витамином C рибосомы и все другие органеллы и клеточные структуры, в которых происходит синтез белка.
Недостаток витамина C приводит к нарушению устойчивости организма не только к инфекциям, но и к действию некоторых токсинов.
Витамин C обладает некоторым защитным свойством в отношении ряда токсических веществ: свинца, сероуглерода, анилина, нитрозаминов и других. Он оказывает блокирующее действие в отношении образования в организме токсических соединений.
Витамин C, как и витамин Е, обладает антиоксидантными свойствами.
Суточная потребность - 60 - 100 мг. У курящих людей витамин C усваивается крайне плохо, и даже при достаточном поступлении с пищей наблюдается его дефицит, Установлено, что вырожденная микрофлора кишечника может разрушать витамин C в кишечнике до его поступления в кровь. Если пища хорошо обработана слюной во рту, то благодаря этому нет потерь витамина C.
Наибольшее количество витамина C в сухом шиповнике, черной смородине, землянике, капусте, укропе и петрушке (зелень).

Витамин P (рутин)

Витамин P объединяет группу биологически активных веществ - биофлаваноидов. В настоящее время их известно около 500, и все они являются продуктами растительного происхождения, в животных тканях эти вещества не обнаружены.
Биологические свойства витамина P и витамина C имеют много общего, кроме того, отмечается выраженный синергизм этих витаминов в проявлении биологического действия.

Физиологическое значение. Основная роль витамина P заключается в его капилляроукрепляющих действиях и снижении проницаемости сосудистой стенки. Поэтому витамин P нормализует состояние капилляров и повышает их прочность.
Потребность точно не установлена, ориентировочно она составляет половинное количество по отношению к витамину C.
Источники витамина P: черная смородина, клюква, вишня, черешня, крыжовник.

Витамин N

Физиологическое значение. Он участвует в процессе биологического окисления. Из других свойств витамина N необходимо отметить его ростовые свойства и использование с пластической целью. Он обладает антиокислительным действием по отношению к витаминам С и Е. Также обладает выраженными защитными свойствами в отношении ряда токсических веществ, особенно в отношении солей тяжелых металлов (мышьяк, ртуть, свинец и др.). При этом образуются прочные водорастворимые комплексы, легко выводимые с мочой. Витамин N предупреждает ожирение печени.
Потребность в витамине N - 0,5 мг/сутки. Находится в капусте, рисе, молоке.
Водорастворимые витамины содержатся в растительной пище и быстро
усваиваются организмом.

Витаминоподобные вещества

Эти вещества объединяют группу веществ, обладающих рядом свойств, присущих истинным витаминам, но не удовлетворяющих всем требованиям, предъявленным к ним.

Витамин B13

Он благотворно влияет на функциональное состояние печени, ускоряет регенерацию печеночных клеток. Имеются данные о том, что оротова кислота (B13) повышает плодовитость и улучшает развитие плода.
Суточная доза - 0,5 -1,5 г. Содержится в пивных дрожжах, печени, молочных продуктах.

Витамин B15

Впервые выделен из ядер косточек абрикосов. Важнейшее и основное физиологическое значение заключается в его липотропных свойствах и функции донатора подвижных метильных групп.
Имеется перспектива применения B15 в спортивной практике. Он улучшает тканевое дыхание, повышает использование кислорода в тканях и участвует в окислительных процессах, стимулируя их, в связи с чем используется при острых и хронических интоксикациях.
Суточная потребность не установлена.

Парааминбензойная кислота (ПАБК), витамин Н1

Это бесцветные кристаллы, растворимые в воде.

Физиологическое значение. У животных под влиянием недостаточности этого витамина возникают нарушения пигментообразования (депигментация волос и др.), задержка роста, расстройство гормональной деятельности и другие.
Суточная потребность не установлена.

Холин, витамин В4

Кристаллическое вещество белого цвета, хорошо растворимое в воде и алкоголе.

Физиологическое значение. Его важнейшая биологическая сторона действия - липотропные свойства. Липотропные свойства. Липотропный эффект холина проявляется путем участия его в синтезе фосфолипидов в печени, обеспечивая быстрое освобождение печени от жирных кислот. При его недостатке наступает жировая инфильтрация печени.
Холин оказывает влияние на процессы белкового и жирового обмена, обезвреживая ряд вредных для организма веществ (селен и другие).
Очень эффективен в профилактике атеросклероза.
Потребность точно не установлена, считают от 0,5 до 3 г.
Содержится в продуктах: печени, яйцах, овсяной крупе, рисе, твороге.

Инозит, витамин В8

Инозит обладает выраженным липотропным и седативным свойствами, а также оказывает стимулирующее действие на моторную функцию пищеварительного аппарата.
Потребность - 1 - 1,5 г/сутки.
Содержится в дынях, капусте, моркови, картофеле, свекле, помидорах, клубнике, особенно много ов проросшей пшенице.

Карнитин, витамин Вт

Он необходим для нормальной функции мышц и поддержания их оптимального физиологического состояния.
Суточная потребность не установлена. Основными источниками считаются мясные продукты.

Витамин U
Он способствует заживлению язвы желудка и 12-перстной кишки. При этом нормализуется функция желудка, он оказывает благоприятное влияние на слизистую оболочку желудка, стимулируются процессы регенерации ее клеток. Применяется при хроническом гастрите. При длительном применении (в течение нескольких месяцев) он не оказывает отрицательного влияния на состояние печени (ее ожирение), в отличие от метионина.
Длительная тепловая обработка приводит к полной потере витамина U.
Содержится в капусте, свекле, петрушке.

Рецепты народной медицины.

«Поделиться этой информацией с друзьями»

Данные кнопки помогают Вам быстро делиться интересными страницами в своих социальных сетяхи блогах. А также печатать, отправлять письмом и добавлять в закладки.

 
# ВКонтакте # Одноклассники # Facebook # Twitter # Google+ # Мой Мир@Mail.Ru # Отправить на email # Blogger # LiveJournal # МойКруг # В Кругу Друзей # Добавить в закладки # Google закладки # Яндекс.Закладки # Печатать #
На главную
Нар. Медицина
 
 
Рейтинг@Mail.ru  
 
Яндекс.Метрика  
 
 
   
Copyright © Твой Храм. Все материалы расположенные на этом сайте предназначены для ознакомления.